Mathématiques

Question

montrer que
(2n +1)² = 4 x n x (n+1) +1

2 Réponse

  • (2n + 1)²
    = 4n² + 4x + 1

    4 x n x (n + 1) + 1
    = 4n(n + 1) + 1
    = 4n² + 4n + 1

  • (2n +1)² = (2n)² + 2 (2n) (1) + 1²
                 = 4n² + 4n +1

    4 x n x (n+1) +1
      = 4n (n+1) +1
                             = 4n² + 4n +1

    Donc (2n +1)² = 4 x n x (n+1) +1

Autres questions